Overview
ETH Balance
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 21,204 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Mint | 1607091 | 158 days ago | IN | 0 ETH | 0.0000018 | ||||
| Mint | 1607087 | 158 days ago | IN | 0 ETH | 0.0000018 | ||||
| Mint | 1607087 | 158 days ago | IN | 0 ETH | 0.00000852 | ||||
| Upgrade Token To | 1607083 | 158 days ago | IN | 0 ETH | 0.00000198 | ||||
| Mint | 1607082 | 158 days ago | IN | 0 ETH | 0.00000852 | ||||
| Upgrade Token To | 1607079 | 158 days ago | IN | 0 ETH | 0.00000937 | ||||
| Mint | 1607078 | 158 days ago | IN | 0 ETH | 0.0000018 | ||||
| Upgrade Token To | 1607076 | 158 days ago | IN | 0 ETH | 0.00000937 | ||||
| Upgrade Token To | 1607074 | 158 days ago | IN | 0 ETH | 0.00000198 | ||||
| Mint | 1607072 | 158 days ago | IN | 0 ETH | 0.0000018 | ||||
| Upgrade Token To | 1607070 | 158 days ago | IN | 0 ETH | 0.00000198 | ||||
| Mint | 1607068 | 158 days ago | IN | 0 ETH | 0.0000018 | ||||
| Upgrade Token To | 1607066 | 158 days ago | IN | 0 ETH | 0.00000937 | ||||
| Mint | 1607065 | 158 days ago | IN | 0 ETH | 0.00000852 | ||||
| Mint | 1607062 | 158 days ago | IN | 0 ETH | 0.0000018 | ||||
| Mint | 1607061 | 158 days ago | IN | 0 ETH | 0.00000852 | ||||
| Mint | 1607057 | 158 days ago | IN | 0 ETH | 0.0000018 | ||||
| Mint | 1607057 | 158 days ago | IN | 0 ETH | 0.00001055 | ||||
| Mint | 1607053 | 158 days ago | IN | 0 ETH | 0.0000018 | ||||
| Upgrade Token To | 1607052 | 158 days ago | IN | 0 ETH | 0.00000186 | ||||
| Mint | 1607049 | 158 days ago | IN | 0 ETH | 0.00000852 | ||||
| Upgrade Token To | 1607048 | 158 days ago | IN | 0 ETH | 0.00000198 | ||||
| Mint | 1607045 | 158 days ago | IN | 0 ETH | 0.00000222 | ||||
| Upgrade Token To | 1607043 | 158 days ago | IN | 0 ETH | 0.00000198 | ||||
| Upgrade Token To | 1607041 | 158 days ago | IN | 0 ETH | 0.00000186 |
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 1236245 | 207 days ago | Contract Creation | 0 ETH |
Cross-Chain Transactions
Loading...
Loading
Minimal Proxy Contract for 0x72435931a043178f46464a0b2a966b767b83d09f
Contract Name:
IntraverseProtocol
Compiler Version
v0.8.24+commit.e11b9ed9
Contract Source Code (Solidity)
/** *Submitted for verification at taikoscan.io on 2025-02-17 */ // Sources flattened with hardhat v2.22.17 https://hardhat.org // SPDX-License-Identifier: GPL-3.0 AND MIT // File @openzeppelin/contracts/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // File @openzeppelin/contracts/access/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // File @openzeppelin/contracts/utils/introspection/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File @openzeppelin/contracts/interfaces/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC2981.sol) pragma solidity ^0.8.20; /** * @dev Interface for the NFT Royalty Standard. * * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal * support for royalty payments across all NFT marketplaces and ecosystem participants. */ interface IERC2981 is IERC165 { /** * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of * exchange. The royalty amount is denominated and should be paid in that same unit of exchange. * * NOTE: ERC-2981 allows setting the royalty to 100% of the price. In that case all the price would be sent to the * royalty receiver and 0 tokens to the seller. Contracts dealing with royalty should consider empty transfers. */ function royaltyInfo( uint256 tokenId, uint256 salePrice ) external view returns (address receiver, uint256 royaltyAmount); } // File @openzeppelin/contracts/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); } // File @openzeppelin/contracts/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol) pragma solidity ^0.8.20; /** * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer. * `CREATE2` can be used to compute in advance the address where a smart * contract will be deployed, which allows for interesting new mechanisms known * as 'counterfactual interactions'. * * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more * information. */ library Create2 { /** * @dev There's no code to deploy. */ error Create2EmptyBytecode(); /** * @dev Deploys a contract using `CREATE2`. The address where the contract * will be deployed can be known in advance via {computeAddress}. * * The bytecode for a contract can be obtained from Solidity with * `type(contractName).creationCode`. * * Requirements: * * - `bytecode` must not be empty. * - `salt` must have not been used for `bytecode` already. * - the factory must have a balance of at least `amount`. * - if `amount` is non-zero, `bytecode` must have a `payable` constructor. */ function deploy( uint256 amount, bytes32 salt, bytes memory bytecode ) internal returns (address addr) { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } if (bytecode.length == 0) { revert Create2EmptyBytecode(); } assembly ("memory-safe") { addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt) // if no address was created, and returndata is not empty, bubble revert if and(iszero(addr), not(iszero(returndatasize()))) { let p := mload(0x40) returndatacopy(p, 0, returndatasize()) revert(p, returndatasize()) } } if (addr == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the * `bytecodeHash` or `salt` will result in a new destination address. */ function computeAddress( bytes32 salt, bytes32 bytecodeHash ) internal view returns (address) { return computeAddress(salt, bytecodeHash, address(this)); } /** * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}. */ function computeAddress( bytes32 salt, bytes32 bytecodeHash, address deployer ) internal pure returns (address addr) { assembly ("memory-safe") { let ptr := mload(0x40) // Get free memory pointer // | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... | // |-------------------|---------------------------------------------------------------------------| // | bytecodeHash | CCCCCCCCCCCCC...CC | // | salt | BBBBBBBBBBBBB...BB | // | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA | // | 0xFF | FF | // |-------------------|---------------------------------------------------------------------------| // | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC | // | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ | mstore(add(ptr, 0x40), bytecodeHash) mstore(add(ptr, 0x20), salt) mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff mstore8(start, 0xff) addr := and( keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff ) } } } // File @openzeppelin/contracts/proxy/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (proxy/Clones.sol) pragma solidity ^0.8.20; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. */ library Clones { error CloneArgumentsTooLong(); /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { return clone(implementation, 0); } /** * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency * to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function clone( address implementation, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } assembly ("memory-safe") { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore( 0x00, or( shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000 ) ) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore( 0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3) ) instance := create(value, 0x09, 0x37) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple times will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic( address implementation, bytes32 salt ) internal returns (address instance) { return cloneDeterministic(implementation, salt, 0); } /** * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with * a `value` parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneDeterministic( address implementation, bytes32 salt, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } assembly ("memory-safe") { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore( 0x00, or( shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000 ) ) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore( 0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3) ) instance := create2(value, 0x09, 0x37, salt) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := and( keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff ) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } /** * @dev Deploys and returns the address of a clone that mimics the behavior of `implementation` with custom * immutable arguments. These are provided through `args` and cannot be changed after deployment. To * access the arguments within the implementation, use {fetchCloneArgs}. * * This function uses the create opcode, which should never revert. */ function cloneWithImmutableArgs( address implementation, bytes memory args ) internal returns (address instance) { return cloneWithImmutableArgs(implementation, args, 0); } /** * @dev Same as {xref-Clones-cloneWithImmutableArgs-address-bytes-}[cloneWithImmutableArgs], but with a `value` * parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneWithImmutableArgs( address implementation, bytes memory args, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } bytes memory bytecode = _cloneCodeWithImmutableArgs( implementation, args ); assembly ("memory-safe") { instance := create(value, add(bytecode, 0x20), mload(bytecode)) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation` with custom * immutable arguments. These are provided through `args` and cannot be changed after deployment. To * access the arguments within the implementation, use {fetchCloneArgs}. * * This function uses the create2 opcode and a `salt` to deterministically deploy the clone. Using the same * `implementation`, `args` and `salt` multiple times will revert, since the clones cannot be deployed twice * at the same address. */ function cloneDeterministicWithImmutableArgs( address implementation, bytes memory args, bytes32 salt ) internal returns (address instance) { return cloneDeterministicWithImmutableArgs(implementation, args, salt, 0); } /** * @dev Same as {xref-Clones-cloneDeterministicWithImmutableArgs-address-bytes-bytes32-}[cloneDeterministicWithImmutableArgs], * but with a `value` parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneDeterministicWithImmutableArgs( address implementation, bytes memory args, bytes32 salt, uint256 value ) internal returns (address instance) { bytes memory bytecode = _cloneCodeWithImmutableArgs( implementation, args ); return Create2.deploy(value, salt, bytecode); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}. */ function predictDeterministicAddressWithImmutableArgs( address implementation, bytes memory args, bytes32 salt, address deployer ) internal pure returns (address predicted) { bytes memory bytecode = _cloneCodeWithImmutableArgs( implementation, args ); return Create2.computeAddress(salt, keccak256(bytecode), deployer); } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministicWithImmutableArgs}. */ function predictDeterministicAddressWithImmutableArgs( address implementation, bytes memory args, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddressWithImmutableArgs( implementation, args, salt, address(this) ); } /** * @dev Get the immutable args attached to a clone. * * - If `instance` is a clone that was deployed using `clone` or `cloneDeterministic`, this * function will return an empty array. * - If `instance` is a clone that was deployed using `cloneWithImmutableArgs` or * `cloneDeterministicWithImmutableArgs`, this function will return the args array used at * creation. * - If `instance` is NOT a clone deployed using this library, the behavior is undefined. This * function should only be used to check addresses that are known to be clones. */ function fetchCloneArgs( address instance ) internal view returns (bytes memory) { bytes memory result = new bytes(instance.code.length - 45); // revert if length is too short assembly ("memory-safe") { extcodecopy(instance, add(result, 32), 45, mload(result)) } return result; } /** * @dev Helper that prepares the initcode of the proxy with immutable args. * * An assembly variant of this function requires copying the `args` array, which can be efficiently done using * `mcopy`. Unfortunately, that opcode is not available before cancun. A pure solidity implementation using * abi.encodePacked is more expensive but also more portable and easier to review. * * NOTE: https://eips.ethereum.org/EIPS/eip-170[EIP-170] limits the length of the contract code to 24576 bytes. * With the proxy code taking 45 bytes, that limits the length of the immutable args to 24531 bytes. */ function _cloneCodeWithImmutableArgs( address implementation, bytes memory args ) private pure returns (bytes memory) { if (args.length > 24531) revert CloneArgumentsTooLong(); return abi.encodePacked( hex"61", uint16(args.length + 45), hex"3d81600a3d39f3363d3d373d3d3d363d73", implementation, hex"5af43d82803e903d91602b57fd5bf3", args ); } } // File @openzeppelin/contracts/utils/introspection/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface( bytes4 interfaceId ) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } } // File @openzeppelin/contracts/token/common/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/common/ERC2981.sol) pragma solidity ^0.8.20; /** * @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information. * * Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for * specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first. * * Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the * fee is specified in basis points by default. * * IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See * https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the ERC. Marketplaces are expected to * voluntarily pay royalties together with sales, but note that this standard is not yet widely supported. */ abstract contract ERC2981 is IERC2981, ERC165 { struct RoyaltyInfo { address receiver; uint96 royaltyFraction; } RoyaltyInfo private _defaultRoyaltyInfo; mapping(uint256 tokenId => RoyaltyInfo) private _tokenRoyaltyInfo; /** * @dev The default royalty set is invalid (eg. (numerator / denominator) >= 1). */ error ERC2981InvalidDefaultRoyalty(uint256 numerator, uint256 denominator); /** * @dev The default royalty receiver is invalid. */ error ERC2981InvalidDefaultRoyaltyReceiver(address receiver); /** * @dev The royalty set for an specific `tokenId` is invalid (eg. (numerator / denominator) >= 1). */ error ERC2981InvalidTokenRoyalty( uint256 tokenId, uint256 numerator, uint256 denominator ); /** * @dev The royalty receiver for `tokenId` is invalid. */ error ERC2981InvalidTokenRoyaltyReceiver(uint256 tokenId, address receiver); /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface( bytes4 interfaceId ) public view virtual override(IERC165, ERC165) returns (bool) { return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId); } /** * @inheritdoc IERC2981 */ function royaltyInfo( uint256 tokenId, uint256 salePrice ) public view virtual returns (address receiver, uint256 amount) { RoyaltyInfo storage _royaltyInfo = _tokenRoyaltyInfo[tokenId]; address royaltyReceiver = _royaltyInfo.receiver; uint96 royaltyFraction = _royaltyInfo.royaltyFraction; if (royaltyReceiver == address(0)) { royaltyReceiver = _defaultRoyaltyInfo.receiver; royaltyFraction = _defaultRoyaltyInfo.royaltyFraction; } uint256 royaltyAmount = (salePrice * royaltyFraction) / _feeDenominator(); return (royaltyReceiver, royaltyAmount); } /** * @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a * fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an * override. */ function _feeDenominator() internal pure virtual returns (uint96) { return 10000; } /** * @dev Sets the royalty information that all ids in this contract will default to. * * Requirements: * * - `receiver` cannot be the zero address. * - `feeNumerator` cannot be greater than the fee denominator. */ function _setDefaultRoyalty( address receiver, uint96 feeNumerator ) internal virtual { uint256 denominator = _feeDenominator(); if (feeNumerator > denominator) { // Royalty fee will exceed the sale price revert ERC2981InvalidDefaultRoyalty(feeNumerator, denominator); } if (receiver == address(0)) { revert ERC2981InvalidDefaultRoyaltyReceiver(address(0)); } _defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator); } /** * @dev Removes default royalty information. */ function _deleteDefaultRoyalty() internal virtual { delete _defaultRoyaltyInfo; } /** * @dev Sets the royalty information for a specific token id, overriding the global default. * * Requirements: * * - `receiver` cannot be the zero address. * - `feeNumerator` cannot be greater than the fee denominator. */ function _setTokenRoyalty( uint256 tokenId, address receiver, uint96 feeNumerator ) internal virtual { uint256 denominator = _feeDenominator(); if (feeNumerator > denominator) { // Royalty fee will exceed the sale price revert ERC2981InvalidTokenRoyalty( tokenId, feeNumerator, denominator ); } if (receiver == address(0)) { revert ERC2981InvalidTokenRoyaltyReceiver(tokenId, address(0)); } _tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator); } /** * @dev Resets royalty information for the token id back to the global default. */ function _resetTokenRoyalty(uint256 tokenId) internal virtual { delete _tokenRoyaltyInfo[tokenId]; } } // File @openzeppelin/contracts/interfaces/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance( address sender, uint256 balance, uint256 needed ); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance( address spender, uint256 allowance, uint256 needed ); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance( address sender, uint256 balance, uint256 needed, uint256 tokenId ); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); } // File @openzeppelin/contracts/token/ERC1155/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155.sol) pragma solidity ^0.8.20; /** * @dev Required interface of an ERC-1155 compliant contract, as defined in the * https://eips.ethereum.org/EIPS/eip-1155[ERC]. */ interface IERC1155 is IERC165 { /** * @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`. */ event TransferSingle( address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value ); /** * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all * transfers. */ event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values ); /** * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to * `approved`. */ event ApprovalForAll( address indexed account, address indexed operator, bool approved ); /** * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI. * * If an {URI} event was emitted for `id`, the standard * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value * returned by {IERC1155MetadataURI-uri}. */ event URI(string value, uint256 indexed id); /** * @dev Returns the value of tokens of token type `id` owned by `account`. */ function balanceOf( address account, uint256 id ) external view returns (uint256); /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch( address[] calldata accounts, uint256[] calldata ids ) external view returns (uint256[] memory); /** * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`, * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the zero address. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns true if `operator` is approved to transfer ``account``'s tokens. * * See {setApprovalForAll}. */ function isApprovedForAll( address account, address operator ) external view returns (bool); /** * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. * * WARNING: This function can potentially allow a reentrancy attack when transferring tokens * to an untrusted contract, when invoking {onERC1155Received} on the receiver. * Ensure to follow the checks-effects-interactions pattern and consider employing * reentrancy guards when interacting with untrusted contracts. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}. * - `from` must have a balance of tokens of type `id` of at least `value` amount. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function safeTransferFrom( address from, address to, uint256 id, uint256 value, bytes calldata data ) external; /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}. * * WARNING: This function can potentially allow a reentrancy attack when transferring tokens * to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver. * Ensure to follow the checks-effects-interactions pattern and consider employing * reentrancy guards when interacting with untrusted contracts. * * Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments. * * Requirements: * * - `ids` and `values` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external; } // File @openzeppelin/contracts/token/ERC1155/extensions/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol) pragma solidity ^0.8.20; /** * @dev Interface of the optional ERC1155MetadataExtension interface, as defined * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC]. */ interface IERC1155MetadataURI is IERC1155 { /** * @dev Returns the URI for token type `id`. * * If the `\{id\}` substring is present in the URI, it must be replaced by * clients with the actual token type ID. */ function uri(uint256 id) external view returns (string memory); } // File @openzeppelin/contracts/token/ERC1155/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.20; /** * @dev Interface that must be implemented by smart contracts in order to receive * ERC-1155 token transfers. */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC-1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC-1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); } // File @openzeppelin/contracts/token/ERC1155/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/utils/ERC1155Utils.sol) pragma solidity ^0.8.20; /** * @dev Library that provide common ERC-1155 utility functions. * * See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155]. * * _Available since v5.1._ */ library ERC1155Utils { /** * @dev Performs an acceptance check for the provided `operator` by calling {IERC1155-onERC1155Received} * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`). * * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA). * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept * the transfer. */ function checkOnERC1155Received( address operator, address from, address to, uint256 id, uint256 value, bytes memory data ) internal { if (to.code.length > 0) { try IERC1155Receiver(to).onERC1155Received( operator, from, id, value, data ) returns (bytes4 response) { if (response != IERC1155Receiver.onERC1155Received.selector) { // Tokens rejected revert IERC1155Errors.ERC1155InvalidReceiver(to); } } catch (bytes memory reason) { if (reason.length == 0) { // non-IERC1155Receiver implementer revert IERC1155Errors.ERC1155InvalidReceiver(to); } else { assembly ("memory-safe") { revert(add(32, reason), mload(reason)) } } } } } /** * @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155-onERC1155BatchReceived} * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`). * * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA). * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept * the transfer. */ function checkOnERC1155BatchReceived( address operator, address from, address to, uint256[] memory ids, uint256[] memory values, bytes memory data ) internal { if (to.code.length > 0) { try IERC1155Receiver(to).onERC1155BatchReceived( operator, from, ids, values, data ) returns (bytes4 response) { if ( response != IERC1155Receiver.onERC1155BatchReceived.selector ) { // Tokens rejected revert IERC1155Errors.ERC1155InvalidReceiver(to); } } catch (bytes memory reason) { if (reason.length == 0) { // non-IERC1155Receiver implementer revert IERC1155Errors.ERC1155InvalidReceiver(to); } else { assembly ("memory-safe") { revert(add(32, reason), mload(reason)) } } } } } } // File @openzeppelin/contracts/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol) pragma solidity ^0.8.20; /** * @dev Provides a set of functions to compare values. * * _Available since v5.1._ */ library Comparators { function lt(uint256 a, uint256 b) internal pure returns (bool) { return a < b; } function gt(uint256 a, uint256 b) internal pure returns (bool) { return a > b; } } // File @openzeppelin/contracts/utils/math/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } } // File @openzeppelin/contracts/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } } // File @openzeppelin/contracts/utils/math/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd( uint256 a, uint256 b ) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub( uint256 a, uint256 b ) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul( uint256 a, uint256 b ) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv( uint256 a, uint256 b ) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod( uint256 a, uint256 b ) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary( bool condition, uint256 a, uint256 b ) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic( ternary( denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW ) ); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint( unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0 ); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp( uint256 b, uint256 e, uint256 m ) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp( uint256 b, uint256 e, uint256 m ) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall( gas(), 0x05, dataPtr, mload(result), dataPtr, mLen ) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt( uint256 a, Rounding rounding ) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint( unsignedRoundsUp(rounding) && result * result < a ); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2( uint256 value, Rounding rounding ) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint( unsignedRoundsUp(rounding) && 1 << result < value ); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10( uint256 value, Rounding rounding ) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint( unsignedRoundsUp(rounding) && 10 ** result < value ); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256( uint256 value, Rounding rounding ) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint( unsignedRoundsUp(rounding) && 1 << (result << 3) < value ); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // File @openzeppelin/contracts/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol) // This file was procedurally generated from scripts/generate/templates/SlotDerivation.js. pragma solidity ^0.8.20; /** * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by * the solidity language / compiler. * * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.]. * * Example usage: * ```solidity * contract Example { * // Add the library methods * using StorageSlot for bytes32; * using SlotDerivation for bytes32; * * // Declare a namespace * string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot * * function setValueInNamespace(uint256 key, address newValue) internal { * _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue; * } * * function getValueInNamespace(uint256 key) internal view returns (address) { * return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value; * } * } * ``` * * TIP: Consider using this library along with {StorageSlot}. * * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking * upgrade safety will ignore the slots accessed through this library. * * _Available since v5.1._ */ library SlotDerivation { /** * @dev Derive an ERC-7201 slot from a string (namespace). */ function erc7201Slot( string memory namespace ) internal pure returns (bytes32 slot) { assembly ("memory-safe") { mstore( 0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1) ) slot := and(keccak256(0x00, 0x20), not(0xff)) } } /** * @dev Add an offset to a slot to get the n-th element of a structure or an array. */ function offset( bytes32 slot, uint256 pos ) internal pure returns (bytes32 result) { unchecked { return bytes32(uint256(slot) + pos); } } /** * @dev Derive the location of the first element in an array from the slot where the length is stored. */ function deriveArray(bytes32 slot) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, slot) result := keccak256(0x00, 0x20) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping( bytes32 slot, address key ) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, and(key, shr(96, not(0)))) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping( bytes32 slot, bool key ) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, iszero(iszero(key))) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping( bytes32 slot, bytes32 key ) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping( bytes32 slot, uint256 key ) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping( bytes32 slot, int256 key ) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping( bytes32 slot, string memory key ) internal pure returns (bytes32 result) { assembly ("memory-safe") { let length := mload(key) let begin := add(key, 0x20) let end := add(begin, length) let cache := mload(end) mstore(end, slot) result := keccak256(begin, add(length, 0x20)) mstore(end, cache) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping( bytes32 slot, bytes memory key ) internal pure returns (bytes32 result) { assembly ("memory-safe") { let length := mload(key) let begin := add(key, 0x20) let end := add(begin, length) let cache := mload(end) mstore(end, slot) result := keccak256(begin, add(length, 0x20)) mstore(end, cache) } } } // File @openzeppelin/contracts/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot( bytes32 slot ) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot( bytes32 slot ) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot( bytes32 slot ) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot( bytes32 slot ) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot( bytes32 slot ) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot( bytes32 slot ) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot( string storage store ) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot( bytes32 slot ) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot( bytes storage store ) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } } // File @openzeppelin/contracts/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol) // This file was procedurally generated from scripts/generate/templates/Arrays.js. pragma solidity ^0.8.20; /** * @dev Collection of functions related to array types. */ library Arrays { using SlotDerivation for bytes32; using StorageSlot for bytes32; /** * @dev Sort an array of uint256 (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( uint256[] memory array, function(uint256, uint256) pure returns (bool) comp ) internal pure returns (uint256[] memory) { _quickSort(_begin(array), _end(array), comp); return array; } /** * @dev Variant of {sort} that sorts an array of uint256 in increasing order. */ function sort( uint256[] memory array ) internal pure returns (uint256[] memory) { sort(array, Comparators.lt); return array; } /** * @dev Sort an array of address (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( address[] memory array, function(address, address) pure returns (bool) comp ) internal pure returns (address[] memory) { sort(_castToUint256Array(array), _castToUint256Comp(comp)); return array; } /** * @dev Variant of {sort} that sorts an array of address in increasing order. */ function sort( address[] memory array ) internal pure returns (address[] memory) { sort(_castToUint256Array(array), Comparators.lt); return array; } /** * @dev Sort an array of bytes32 (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( bytes32[] memory array, function(bytes32, bytes32) pure returns (bool) comp ) internal pure returns (bytes32[] memory) { sort(_castToUint256Array(array), _castToUint256Comp(comp)); return array; } /** * @dev Variant of {sort} that sorts an array of bytes32 in increasing order. */ function sort( bytes32[] memory array ) internal pure returns (bytes32[] memory) { sort(_castToUint256Array(array), Comparators.lt); return array; } /** * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops * at end (exclusive). Sorting follows the `comp` comparator. * * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls. * * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should * be used only if the limits are within a memory array. */ function _quickSort( uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp ) private pure { unchecked { if (end - begin < 0x40) return; // Use first element as pivot uint256 pivot = _mload(begin); // Position where the pivot should be at the end of the loop uint256 pos = begin; for (uint256 it = begin + 0x20; it < end; it += 0x20) { if (comp(_mload(it), pivot)) { // If the value stored at the iterator's position comes before the pivot, we increment the // position of the pivot and move the value there. pos += 0x20; _swap(pos, it); } } _swap(begin, pos); // Swap pivot into place _quickSort(begin, pos, comp); // Sort the left side of the pivot _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot } } /** * @dev Pointer to the memory location of the first element of `array`. */ function _begin(uint256[] memory array) private pure returns (uint256 ptr) { assembly ("memory-safe") { ptr := add(array, 0x20) } } /** * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word * that comes just after the last element of the array. */ function _end(uint256[] memory array) private pure returns (uint256 ptr) { unchecked { return _begin(array) + array.length * 0x20; } } /** * @dev Load memory word (as a uint256) at location `ptr`. */ function _mload(uint256 ptr) private pure returns (uint256 value) { assembly { value := mload(ptr) } } /** * @dev Swaps the elements memory location `ptr1` and `ptr2`. */ function _swap(uint256 ptr1, uint256 ptr2) private pure { assembly { let value1 := mload(ptr1) let value2 := mload(ptr2) mstore(ptr1, value2) mstore(ptr2, value1) } } /// @dev Helper: low level cast address memory array to uint256 memory array function _castToUint256Array( address[] memory input ) private pure returns (uint256[] memory output) { assembly { output := input } } /// @dev Helper: low level cast bytes32 memory array to uint256 memory array function _castToUint256Array( bytes32[] memory input ) private pure returns (uint256[] memory output) { assembly { output := input } } /// @dev Helper: low level cast address comp function to uint256 comp function function _castToUint256Comp( function(address, address) pure returns (bool) input ) private pure returns (function(uint256, uint256) pure returns (bool) output) { assembly { output := input } } /// @dev Helper: low level cast bytes32 comp function to uint256 comp function function _castToUint256Comp( function(bytes32, bytes32) pure returns (bool) input ) private pure returns (function(uint256, uint256) pure returns (bool) output) { assembly { output := input } } /** * @dev Searches a sorted `array` and returns the first index that contains * a value greater or equal to `element`. If no such index exists (i.e. all * values in the array are strictly less than `element`), the array length is * returned. Time complexity O(log n). * * NOTE: The `array` is expected to be sorted in ascending order, and to * contain no repeated elements. * * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks * support for repeated elements in the array. The {lowerBound} function should * be used instead. */ function findUpperBound( uint256[] storage array, uint256 element ) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { low = mid + 1; } } // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound. if (low > 0 && unsafeAccess(array, low - 1).value == element) { return low - 1; } else { return low; } } /** * @dev Searches an `array` sorted in ascending order and returns the first * index that contains a value greater or equal than `element`. If no such index * exists (i.e. all values in the array are strictly less than `element`), the array * length is returned. Time complexity O(log n). * * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound]. */ function lowerBound( uint256[] storage array, uint256 element ) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value < element) { // this cannot overflow because mid < high unchecked { low = mid + 1; } } else { high = mid; } } return low; } /** * @dev Searches an `array` sorted in ascending order and returns the first * index that contains a value strictly greater than `element`. If no such index * exists (i.e. all values in the array are strictly less than `element`), the array * length is returned. Time complexity O(log n). * * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound]. */ function upperBound( uint256[] storage array, uint256 element ) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { // this cannot overflow because mid < high unchecked { low = mid + 1; } } } return low; } /** * @dev Same as {lowerBound}, but with an array in memory. */ function lowerBoundMemory( uint256[] memory array, uint256 element ) internal pure returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeMemoryAccess(array, mid) < element) { // this cannot overflow because mid < high unchecked { low = mid + 1; } } else { high = mid; } } return low; } /** * @dev Same as {upperBound}, but with an array in memory. */ function upperBoundMemory( uint256[] memory array, uint256 element ) internal pure returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeMemoryAccess(array, mid) > element) { high = mid; } else { // this cannot overflow because mid < high unchecked { low = mid + 1; } } } return low; } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess( address[] storage arr, uint256 pos ) internal pure returns (StorageSlot.AddressSlot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getAddressSlot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess( bytes32[] storage arr, uint256 pos ) internal pure returns (StorageSlot.Bytes32Slot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getBytes32Slot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess( uint256[] storage arr, uint256 pos ) internal pure returns (StorageSlot.Uint256Slot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getUint256Slot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess( address[] memory arr, uint256 pos ) internal pure returns (address res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess( bytes32[] memory arr, uint256 pos ) internal pure returns (bytes32 res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess( uint256[] memory arr, uint256 pos ) internal pure returns (uint256 res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(address[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } /** * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(bytes32[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } /** * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(uint256[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } } // File @openzeppelin/contracts/token/ERC1155/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/ERC1155.sol) pragma solidity ^0.8.20; /** * @dev Implementation of the basic standard multi-token. * See https://eips.ethereum.org/EIPS/eip-1155 * Originally based on code by Enjin: https://github.com/enjin/erc-1155 */ abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors { using Arrays for uint256[]; using Arrays for address[]; mapping(uint256 id => mapping(address account => uint256)) private _balances; mapping(address account => mapping(address operator => bool)) private _operatorApprovals; // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json string private _uri; /** * @dev See {_setURI}. */ constructor(string memory uri_) { _setURI(uri_); } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface( bytes4 interfaceId ) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC1155).interfaceId || interfaceId == type(IERC1155MetadataURI).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC1155MetadataURI-uri}. * * This implementation returns the same URI for *all* token types. It relies * on the token type ID substitution mechanism * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC]. * * Clients calling this function must replace the `\{id\}` substring with the * actual token type ID. */ function uri(uint256 /* id */) public view virtual returns (string memory) { return _uri; } /** * @dev See {IERC1155-balanceOf}. */ function balanceOf( address account, uint256 id ) public view virtual returns (uint256) { return _balances[id][account]; } /** * @dev See {IERC1155-balanceOfBatch}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch( address[] memory accounts, uint256[] memory ids ) public view virtual returns (uint256[] memory) { if (accounts.length != ids.length) { revert ERC1155InvalidArrayLength(ids.length, accounts.length); } uint256[] memory batchBalances = new uint256[](accounts.length); for (uint256 i = 0; i < accounts.length; ++i) { batchBalances[i] = balanceOf( accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i) ); } return batchBalances; } /** * @dev See {IERC1155-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC1155-isApprovedForAll}. */ function isApprovedForAll( address account, address operator ) public view virtual returns (bool) { return _operatorApprovals[account][operator]; } /** * @dev See {IERC1155-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 id, uint256 value, bytes memory data ) public virtual { address sender = _msgSender(); if (from != sender && !isApprovedForAll(from, sender)) { revert ERC1155MissingApprovalForAll(sender, from); } _safeTransferFrom(from, to, id, value, data); } /** * @dev See {IERC1155-safeBatchTransferFrom}. */ function safeBatchTransferFrom( address from, address to, uint256[] memory ids, uint256[] memory values, bytes memory data ) public virtual { address sender = _msgSender(); if (from != sender && !isApprovedForAll(from, sender)) { revert ERC1155MissingApprovalForAll(sender, from); } _safeBatchTransferFrom(from, to, ids, values, data); } /** * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from` * (or `to`) is the zero address. * * Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise. * * Requirements: * * - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received} * or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value. * - `ids` and `values` must have the same length. * * NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead. */ function _update( address from, address to, uint256[] memory ids, uint256[] memory values ) internal virtual { if (ids.length != values.length) { revert ERC1155InvalidArrayLength(ids.length, values.length); } address operator = _msgSender(); for (uint256 i = 0; i < ids.length; ++i) { uint256 id = ids.unsafeMemoryAccess(i); uint256 value = values.unsafeMemoryAccess(i); if (from != address(0)) { uint256 fromBalance = _balances[id][from]; if (fromBalance < value) { revert ERC1155InsufficientBalance( from, fromBalance, value, id ); } unchecked { // Overflow not possible: value <= fromBalance _balances[id][from] = fromBalance - value; } } if (to != address(0)) { _balances[id][to] += value; } } if (ids.length == 1) { uint256 id = ids.unsafeMemoryAccess(0); uint256 value = values.unsafeMemoryAccess(0); emit TransferSingle(operator, from, to, id, value); } else { emit TransferBatch(operator, from, to, ids, values); } } /** * @dev Version of {_update} that performs the token acceptance check by calling * {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it * contains code (eg. is a smart contract at the moment of execution). * * IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any * update to the contract state after this function would break the check-effect-interaction pattern. Consider * overriding {_update} instead. */ function _updateWithAcceptanceCheck( address from, address to, uint256[] memory ids, uint256[] memory values, bytes memory data ) internal virtual { _update(from, to, ids, values); if (to != address(0)) { address operator = _msgSender(); if (ids.length == 1) { uint256 id = ids.unsafeMemoryAccess(0); uint256 value = values.unsafeMemoryAccess(0); ERC1155Utils.checkOnERC1155Received( operator, from, to, id, value, data ); } else { ERC1155Utils.checkOnERC1155BatchReceived( operator, from, to, ids, values, data ); } } } /** * @dev Transfers a `value` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - `from` must have a balance of tokens of type `id` of at least `value` amount. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function _safeTransferFrom( address from, address to, uint256 id, uint256 value, bytes memory data ) internal { if (to == address(0)) { revert ERC1155InvalidReceiver(address(0)); } if (from == address(0)) { revert ERC1155InvalidSender(address(0)); } (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays( id, value ); _updateWithAcceptanceCheck(from, to, ids, values, data); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. * - `ids` and `values` must have the same length. */ function _safeBatchTransferFrom( address from, address to, uint256[] memory ids, uint256[] memory values, bytes memory data ) internal { if (to == address(0)) { revert ERC1155InvalidReceiver(address(0)); } if (from == address(0)) { revert ERC1155InvalidSender(address(0)); } _updateWithAcceptanceCheck(from, to, ids, values, data); } /** * @dev Sets a new URI for all token types, by relying on the token type ID * substitution mechanism * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC]. * * By this mechanism, any occurrence of the `\{id\}` substring in either the * URI or any of the values in the JSON file at said URI will be replaced by * clients with the token type ID. * * For example, the `https://token-cdn-domain/\{id\}.json` URI would be * interpreted by clients as * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json` * for token type ID 0x4cce0. * * See {uri}. * * Because these URIs cannot be meaningfully represented by the {URI} event, * this function emits no events. */ function _setURI(string memory newuri) internal virtual { _uri = newuri; } /** * @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function _mint( address to, uint256 id, uint256 value, bytes memory data ) internal { if (to == address(0)) { revert ERC1155InvalidReceiver(address(0)); } (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays( id, value ); _updateWithAcceptanceCheck(address(0), to, ids, values, data); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `values` must have the same length. * - `to` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function _mintBatch( address to, uint256[] memory ids, uint256[] memory values, bytes memory data ) internal { if (to == address(0)) { revert ERC1155InvalidReceiver(address(0)); } _updateWithAcceptanceCheck(address(0), to, ids, values, data); } /** * @dev Destroys a `value` amount of tokens of type `id` from `from` * * Emits a {TransferSingle} event. * * Requirements: * * - `from` cannot be the zero address. * - `from` must have at least `value` amount of tokens of type `id`. */ function _burn(address from, uint256 id, uint256 value) internal { if (from == address(0)) { revert ERC1155InvalidSender(address(0)); } (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays( id, value ); _updateWithAcceptanceCheck(from, address(0), ids, values, ""); } /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}. * * Emits a {TransferBatch} event. * * Requirements: * * - `from` cannot be the zero address. * - `from` must have at least `value` amount of tokens of type `id`. * - `ids` and `values` must have the same length. */ function _burnBatch( address from, uint256[] memory ids, uint256[] memory values ) internal { if (from == address(0)) { revert ERC1155InvalidSender(address(0)); } _updateWithAcceptanceCheck(from, address(0), ids, values, ""); } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the zero address. */ function _setApprovalForAll( address owner, address operator, bool approved ) internal virtual { if (operator == address(0)) { revert ERC1155InvalidOperator(address(0)); } _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Creates an array in memory with only one value for each of the elements provided. */ function _asSingletonArrays( uint256 element1, uint256 element2 ) private pure returns (uint256[] memory array1, uint256[] memory array2) { assembly ("memory-safe") { // Load the free memory pointer array1 := mload(0x40) // Set array length to 1 mstore(array1, 1) // Store the single element at the next word after the length (where content starts) mstore(add(array1, 0x20), element1) // Repeat for next array locating it right after the first array array2 := add(array1, 0x40) mstore(array2, 1) mstore(add(array2, 0x20), element2) // Update the free memory pointer by pointing after the second array mstore(0x40, add(array2, 0x40)) } } } // File @openzeppelin/contracts/token/ERC1155/extensions/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/ERC1155Supply.sol) pragma solidity ^0.8.20; /** * @dev Extension of ERC-1155 that adds tracking of total supply per id. * * Useful for scenarios where Fungible and Non-fungible tokens have to be * clearly identified. Note: While a totalSupply of 1 might mean the * corresponding is an NFT, there is no guarantees that no other token with the * same id are not going to be minted. * * NOTE: This contract implies a global limit of 2**256 - 1 to the number of tokens * that can be minted. * * CAUTION: This extension should not be added in an upgrade to an already deployed contract. */ abstract contract ERC1155Supply is ERC1155 { using Arrays for uint256[]; mapping(uint256 id => uint256) private _totalSupply; uint256 private _totalSupplyAll; /** * @dev Total value of tokens in with a given id. */ function totalSupply(uint256 id) public view virtual returns (uint256) { return _totalSupply[id]; } /** * @dev Total value of tokens. */ function totalSupply() public view virtual returns (uint256) { return _totalSupplyAll; } /** * @dev Indicates whether any token exist with a given id, or not. */ function exists(uint256 id) public view virtual returns (bool) { return totalSupply(id) > 0; } /** * @dev See {ERC1155-_update}. */ function _update( address from, address to, uint256[] memory ids, uint256[] memory values ) internal virtual override { super._update(from, to, ids, values); if (from == address(0)) { uint256 totalMintValue = 0; for (uint256 i = 0; i < ids.length; ++i) { uint256 value = values.unsafeMemoryAccess(i); // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply[ids.unsafeMemoryAccess(i)] += value; totalMintValue += value; } // Overflow check required: The rest of the code assumes that totalSupplyAll never overflows _totalSupplyAll += totalMintValue; } if (to == address(0)) { uint256 totalBurnValue = 0; for (uint256 i = 0; i < ids.length; ++i) { uint256 value = values.unsafeMemoryAccess(i); unchecked { // Overflow not possible: values[i] <= balanceOf(from, ids[i]) <= totalSupply(ids[i]) _totalSupply[ids.unsafeMemoryAccess(i)] -= value; // Overflow not possible: sum_i(values[i]) <= sum_i(totalSupply(ids[i])) <= totalSupplyAll totalBurnValue += value; } } unchecked { // Overflow not possible: totalBurnValue = sum_i(values[i]) <= sum_i(totalSupply(ids[i])) <= totalSupplyAll _totalSupplyAll -= totalBurnValue; } } } } // File @openzeppelin/contracts/utils/math/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary( bool condition, int256 a, int256 b ) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } } // File @openzeppelin/contracts/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol) pragma solidity ^0.8.20; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned( int256 value ) internal pure returns (string memory) { return string.concat( value < 0 ? "-" : "", toString(SignedMath.abs(value)) ); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString( uint256 value, uint256 length ) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString( address addr ) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal( string memory a, string memory b ) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input ) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input ) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint( input, begin + offset, end ); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input ) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input ) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds( input, begin, end ); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset( bytes memory buffer, uint256 offset ) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } } // File @openzeppelin/contracts/utils/cryptography/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash( bytes32 messageHash ) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash( bytes memory message ) internal pure returns (bytes32) { return keccak256( bytes.concat( "\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message ) ); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash( address validator, bytes memory data ) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash( bytes32 domainSeparator, bytes32 structHash ) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } } // File @openzeppelin/contracts/proxy/utils/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } } // File @openzeppelin/contracts/utils/cryptography/[email protected] // Original license: SPDX_License_Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return ( address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length) ); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover( bytes32 hash, bytes memory signature ) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover( hash, signature ); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32( 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff ); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover( hash, r, vs ); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if ( uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 ) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover( hash, v, r, s ); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } } // File hardhat/[email protected] // Original license: SPDX_License_Identifier: MIT pragma solidity >=0.4.22 <0.9.0; library console { address constant CONSOLE_ADDRESS = 0x000000000000000000636F6e736F6c652e6c6f67; function _sendLogPayloadImplementation(bytes memory payload) internal view { address consoleAddress = CONSOLE_ADDRESS; /// @solidity memory-safe-assembly assembly { pop( staticcall( gas(), consoleAddress, add(payload, 32), mload(payload), 0, 0 ) ) } } function _castToPure( function(bytes memory) internal view fnIn ) internal pure returns (function(bytes memory) pure fnOut) { assembly { fnOut := fnIn } } function _sendLogPayload(bytes memory payload) internal pure { _castToPure(_sendLogPayloadImplementation)(payload); } function log() internal pure { _sendLogPayload(abi.encodeWithSignature("log()")); } function logInt(int256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(int256)", p0)); } function logUint(uint256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0)); } function logString(string memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function logBool(bool p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function logAddress(address p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function logBytes(bytes memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0)); } function logBytes1(bytes1 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0)); } function logBytes2(bytes2 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0)); } function logBytes3(bytes3 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0)); } function logBytes4(bytes4 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0)); } function logBytes5(bytes5 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0)); } function logBytes6(bytes6 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0)); } function logBytes7(bytes7 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0)); } function logBytes8(bytes8 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0)); } function logBytes9(bytes9 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0)); } function logBytes10(bytes10 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0)); } function logBytes11(bytes11 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0)); } function logBytes12(bytes12 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0)); } function logBytes13(bytes13 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0)); } function logBytes14(bytes14 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0)); } function logBytes15(bytes15 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0)); } function logBytes16(bytes16 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0)); } function logBytes17(bytes17 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0)); } function logBytes18(bytes18 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0)); } function logBytes19(bytes19 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0)); } function logBytes20(bytes20 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0)); } function logBytes21(bytes21 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0)); } function logBytes22(bytes22 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0)); } function logBytes23(bytes23 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0)); } function logBytes24(bytes24 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0)); } function logBytes25(bytes25 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0)); } function logBytes26(bytes26 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0)); } function logBytes27(bytes27 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0)); } function logBytes28(bytes28 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0)); } function logBytes29(bytes29 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0)); } function logBytes30(bytes30 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0)); } function logBytes31(bytes31 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0)); } function logBytes32(bytes32 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0)); } function log(uint256 p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0)); } function log(string memory p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function log(bool p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function log(address p0) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function log(uint256 p0, uint256 p1) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,uint256)", p0, p1) ); } function log(uint256 p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,string)", p0, p1)); } function log(uint256 p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool)", p0, p1)); } function log(uint256 p0, address p1) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,address)", p0, p1) ); } function log(string memory p0, uint256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,uint256)", p0, p1)); } function log(string memory p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1)); } function log(string memory p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1)); } function log(string memory p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1)); } function log(bool p0, uint256 p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256)", p0, p1)); } function log(bool p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1)); } function log(bool p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1)); } function log(bool p0, address p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1)); } function log(address p0, uint256 p1) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,uint256)", p0, p1) ); } function log(address p0, string memory p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1)); } function log(address p0, bool p1) internal pure { _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1)); } function log(address p0, address p1) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,address)", p0, p1) ); } function log(uint256 p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,uint256,uint256)", p0, p1, p2) ); } function log(uint256 p0, uint256 p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,uint256,string)", p0, p1, p2) ); } function log(uint256 p0, uint256 p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,uint256,bool)", p0, p1, p2) ); } function log(uint256 p0, uint256 p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,uint256,address)", p0, p1, p2) ); } function log(uint256 p0, string memory p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,string,uint256)", p0, p1, p2) ); } function log(uint256 p0, string memory p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,string,string)", p0, p1, p2) ); } function log(uint256 p0, string memory p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,string,bool)", p0, p1, p2) ); } function log(uint256 p0, string memory p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,string,address)", p0, p1, p2) ); } function log(uint256 p0, bool p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,bool,uint256)", p0, p1, p2) ); } function log(uint256 p0, bool p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,bool,string)", p0, p1, p2) ); } function log(uint256 p0, bool p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,bool,bool)", p0, p1, p2) ); } function log(uint256 p0, bool p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,bool,address)", p0, p1, p2) ); } function log(uint256 p0, address p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,address,uint256)", p0, p1, p2) ); } function log(uint256 p0, address p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,address,string)", p0, p1, p2) ); } function log(uint256 p0, address p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,address,bool)", p0, p1, p2) ); } function log(uint256 p0, address p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(uint256,address,address)", p0, p1, p2) ); } function log(string memory p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,uint256,uint256)", p0, p1, p2) ); } function log(string memory p0, uint256 p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,uint256,string)", p0, p1, p2) ); } function log(string memory p0, uint256 p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,uint256,bool)", p0, p1, p2) ); } function log(string memory p0, uint256 p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,uint256,address)", p0, p1, p2) ); } function log(string memory p0, string memory p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,string,uint256)", p0, p1, p2) ); } function log( string memory p0, string memory p1, string memory p2 ) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,string,string)", p0, p1, p2) ); } function log(string memory p0, string memory p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2) ); } function log(string memory p0, string memory p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,string,address)", p0, p1, p2) ); } function log(string memory p0, bool p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,bool,uint256)", p0, p1, p2) ); } function log(string memory p0, bool p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2) ); } function log(string memory p0, bool p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2) ); } function log(string memory p0, bool p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2) ); } function log(string memory p0, address p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,address,uint256)", p0, p1, p2) ); } function log(string memory p0, address p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,address,string)", p0, p1, p2) ); } function log(string memory p0, address p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2) ); } function log(string memory p0, address p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(string,address,address)", p0, p1, p2) ); } function log(bool p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,uint256,uint256)", p0, p1, p2) ); } function log(bool p0, uint256 p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,uint256,string)", p0, p1, p2) ); } function log(bool p0, uint256 p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,uint256,bool)", p0, p1, p2) ); } function log(bool p0, uint256 p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,uint256,address)", p0, p1, p2) ); } function log(bool p0, string memory p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,string,uint256)", p0, p1, p2) ); } function log(bool p0, string memory p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2) ); } function log(bool p0, string memory p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2) ); } function log(bool p0, string memory p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2) ); } function log(bool p0, bool p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,bool,uint256)", p0, p1, p2) ); } function log(bool p0, bool p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2) ); } function log(bool p0, bool p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2) ); } function log(bool p0, bool p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2) ); } function log(bool p0, address p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,address,uint256)", p0, p1, p2) ); } function log(bool p0, address p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2) ); } function log(bool p0, address p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2) ); } function log(bool p0, address p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2) ); } function log(address p0, uint256 p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,uint256,uint256)", p0, p1, p2) ); } function log(address p0, uint256 p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,uint256,string)", p0, p1, p2) ); } function log(address p0, uint256 p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,uint256,bool)", p0, p1, p2) ); } function log(address p0, uint256 p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,uint256,address)", p0, p1, p2) ); } function log(address p0, string memory p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,string,uint256)", p0, p1, p2) ); } function log(address p0, string memory p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,string,string)", p0, p1, p2) ); } function log(address p0, string memory p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2) ); } function log(address p0, string memory p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,string,address)", p0, p1, p2) ); } function log(address p0, bool p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,bool,uint256)", p0, p1, p2) ); } function log(address p0, bool p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2) ); } function log(address p0, bool p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2) ); } function log(address p0, bool p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2) ); } function log(address p0, address p1, uint256 p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,address,uint256)", p0, p1, p2) ); } function log(address p0, address p1, string memory p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,address,string)", p0, p1, p2) ); } function log(address p0, address p1, bool p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2) ); } function log(address p0, address p1, address p2) internal pure { _sendLogPayload( abi.encodeWithSignature("log(address,address,address)", p0, p1, p2) ); } function log(uint256 p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, uint256 p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,uint256,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,uint256,bool)", p0, p1, p2, p3 ) ); } function log(uint256 p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,uint256,address)", p0, p1, p2, p3 ) ); } function log( uint256 p0, uint256 p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,string,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, uint256 p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,string,string)", p0, p1, p2, p3 ) ); } function log( uint256 p0, uint256 p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,string,bool)", p0, p1, p2, p3 ) ); } function log( uint256 p0, uint256 p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,string,address)", p0, p1, p2, p3 ) ); } function log(uint256 p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,bool,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, uint256 p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,bool,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,bool,bool)", p0, p1, p2, p3 ) ); } function log(uint256 p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,bool,address)", p0, p1, p2, p3 ) ); } function log(uint256 p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,address,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, uint256 p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,address,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,address,bool)", p0, p1, p2, p3 ) ); } function log(uint256 p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,uint256,address,address)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, uint256 p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,uint256,string)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, uint256 p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,uint256,bool)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, uint256 p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,uint256,address)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,string,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,string,string)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,string,bool)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,string,address)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, bool p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,bool,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,bool,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,bool,bool)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, bool p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,bool,address)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, address p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,address,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,address,string)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, address p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,address,bool)", p0, p1, p2, p3 ) ); } function log( uint256 p0, string memory p1, address p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,string,address,address)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, bool p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,uint256,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,uint256,bool)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,uint256,address)", p0, p1, p2, p3 ) ); } function log( uint256 p0, bool p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,string,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, bool p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,string,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,string,bool)", p0, p1, p2, p3 ) ); } function log( uint256 p0, bool p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,string,address)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,bool,uint256)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,bool,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,bool,bool)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,bool,address)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,address,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, bool p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,address,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,address,bool)", p0, p1, p2, p3 ) ); } function log(uint256 p0, bool p1, address p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,bool,address,address)", p0, p1, p2, p3 ) ); } function log(uint256 p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, address p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,uint256,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,uint256,bool)", p0, p1, p2, p3 ) ); } function log(uint256 p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,uint256,address)", p0, p1, p2, p3 ) ); } function log( uint256 p0, address p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,string,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, address p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,string,string)", p0, p1, p2, p3 ) ); } function log( uint256 p0, address p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,string,bool)", p0, p1, p2, p3 ) ); } function log( uint256 p0, address p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,string,address)", p0, p1, p2, p3 ) ); } function log(uint256 p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,bool,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, address p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,bool,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,bool,bool)", p0, p1, p2, p3 ) ); } function log(uint256 p0, address p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,bool,address)", p0, p1, p2, p3 ) ); } function log(uint256 p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,address,uint256)", p0, p1, p2, p3 ) ); } function log( uint256 p0, address p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,address,string)", p0, p1, p2, p3 ) ); } function log(uint256 p0, address p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,address,bool)", p0, p1, p2, p3 ) ); } function log(uint256 p0, address p1, address p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(uint256,address,address,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, uint256 p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,uint256,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, uint256 p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,uint256,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, uint256 p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,uint256,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,string,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,string,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,string,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,string,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, bool p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,bool,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,bool,string)", p0, p1, p2, p3 ) ); } function log(string memory p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,bool,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, bool p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,bool,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, address p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,address,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,address,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, address p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,address,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, uint256 p1, address p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,uint256,address,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, uint256 p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,uint256,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, uint256 p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,uint256,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, uint256 p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,uint256,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,string,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,string,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,string,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,string,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, bool p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,bool,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,bool,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, bool p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,bool,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, bool p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,bool,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, address p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,address,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,address,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, address p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,address,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, string memory p1, address p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,string,address,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, uint256 p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,uint256,string)", p0, p1, p2, p3 ) ); } function log(string memory p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,uint256,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, uint256 p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,uint256,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,string,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,string,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,string,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,string,address)", p0, p1, p2, p3 ) ); } function log(string memory p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,bool,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,bool,string)", p0, p1, p2, p3 ) ); } function log(string memory p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,bool,bool)", p0, p1, p2, p3 ) ); } function log(string memory p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,bool,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, address p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,address,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,address,string)", p0, p1, p2, p3 ) ); } function log(string memory p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,address,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, bool p1, address p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,bool,address,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, uint256 p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,uint256,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, uint256 p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,uint256,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, uint256 p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,uint256,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,string,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,string,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,string,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,string,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, bool p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,bool,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,bool,string)", p0, p1, p2, p3 ) ); } function log(string memory p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,bool,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, bool p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,bool,address)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, address p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,address,uint256)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,address,string)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, address p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,address,bool)", p0, p1, p2, p3 ) ); } function log( string memory p0, address p1, address p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(string,address,address,address)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, uint256 p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,uint256,string)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,uint256,bool)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,uint256,address)", p0, p1, p2, p3 ) ); } function log( bool p0, uint256 p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,string,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, uint256 p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,string,string)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, string memory p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,string,bool)", p0, p1, p2, p3 ) ); } function log( bool p0, uint256 p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,string,address)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,bool,uint256)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, bool p2, string memory p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,bool,string)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,bool,bool)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,bool,address)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,address,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, uint256 p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,address,string)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,address,bool)", p0, p1, p2, p3 ) ); } function log(bool p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,uint256,address,address)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, uint256 p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,uint256,string)", p0, p1, p2, p3 ) ); } function log(bool p0, string memory p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,uint256,bool)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, uint256 p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,uint256,address)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,string,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,string,string)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,string,bool)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,string,address)", p0, p1, p2, p3 ) ); } function log(bool p0, string memory p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,bool,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,bool,string)", p0, p1, p2, p3 ) ); } function log(bool p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,bool,bool)", p0, p1, p2, p3 ) ); } function log(bool p0, string memory p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,bool,address)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, address p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,address,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,address,string)", p0, p1, p2, p3 ) ); } function log(bool p0, string memory p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,address,bool)", p0, p1, p2, p3 ) ); } function log( bool p0, string memory p1, address p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,string,address,address)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,uint256,uint256)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, uint256 p2, string memory p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,uint256,string)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,uint256,bool)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,uint256,address)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, string memory p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,string,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, bool p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,string,string)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,string,bool)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, string memory p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,string,address)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,bool,uint256)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,bool,string)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3) ); } function log(bool p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,bool,address)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,address,uint256)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, address p2, string memory p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,address,string)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,address,bool)", p0, p1, p2, p3 ) ); } function log(bool p0, bool p1, address p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,bool,address,address)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, address p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,uint256,string)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,uint256,bool)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,uint256,address)", p0, p1, p2, p3 ) ); } function log( bool p0, address p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,string,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, address p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,string,string)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, string memory p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,string,bool)", p0, p1, p2, p3 ) ); } function log( bool p0, address p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,string,address)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,bool,uint256)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, bool p2, string memory p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,bool,string)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,bool,bool)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,bool,address)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,address,uint256)", p0, p1, p2, p3 ) ); } function log( bool p0, address p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,address,string)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,address,bool)", p0, p1, p2, p3 ) ); } function log(bool p0, address p1, address p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(bool,address,address,address)", p0, p1, p2, p3 ) ); } function log(address p0, uint256 p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, uint256 p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,uint256,string)", p0, p1, p2, p3 ) ); } function log(address p0, uint256 p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,uint256,bool)", p0, p1, p2, p3 ) ); } function log(address p0, uint256 p1, uint256 p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,uint256,address)", p0, p1, p2, p3 ) ); } function log( address p0, uint256 p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,string,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, uint256 p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,string,string)", p0, p1, p2, p3 ) ); } function log( address p0, uint256 p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,string,bool)", p0, p1, p2, p3 ) ); } function log( address p0, uint256 p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,string,address)", p0, p1, p2, p3 ) ); } function log(address p0, uint256 p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,bool,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, uint256 p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,bool,string)", p0, p1, p2, p3 ) ); } function log(address p0, uint256 p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,bool,bool)", p0, p1, p2, p3 ) ); } function log(address p0, uint256 p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,bool,address)", p0, p1, p2, p3 ) ); } function log(address p0, uint256 p1, address p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,address,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, uint256 p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,address,string)", p0, p1, p2, p3 ) ); } function log(address p0, uint256 p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,address,bool)", p0, p1, p2, p3 ) ); } function log(address p0, uint256 p1, address p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,uint256,address,address)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, uint256 p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,uint256,string)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, uint256 p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,uint256,bool)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, uint256 p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,uint256,address)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,string,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,string,string)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,string,bool)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,string,address)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, bool p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,bool,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,bool,string)", p0, p1, p2, p3 ) ); } function log(address p0, string memory p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,bool,bool)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, bool p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,bool,address)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, address p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,address,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,address,string)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, address p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,address,bool)", p0, p1, p2, p3 ) ); } function log( address p0, string memory p1, address p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,string,address,address)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, bool p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,uint256,string)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,uint256,bool)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, uint256 p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,uint256,address)", p0, p1, p2, p3 ) ); } function log( address p0, bool p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,string,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, bool p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,string,string)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, string memory p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,string,bool)", p0, p1, p2, p3 ) ); } function log( address p0, bool p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,string,address)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,bool,uint256)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, bool p2, string memory p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,bool,string)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,bool,bool)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,bool,address)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, address p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,address,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, bool p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,address,string)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,address,bool)", p0, p1, p2, p3 ) ); } function log(address p0, bool p1, address p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,bool,address,address)", p0, p1, p2, p3 ) ); } function log(address p0, address p1, uint256 p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,uint256,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, address p1, uint256 p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,uint256,string)", p0, p1, p2, p3 ) ); } function log(address p0, address p1, uint256 p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,uint256,bool)", p0, p1, p2, p3 ) ); } function log(address p0, address p1, uint256 p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,uint256,address)", p0, p1, p2, p3 ) ); } function log( address p0, address p1, string memory p2, uint256 p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,string,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, address p1, string memory p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,string,string)", p0, p1, p2, p3 ) ); } function log( address p0, address p1, string memory p2, bool p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,string,bool)", p0, p1, p2, p3 ) ); } function log( address p0, address p1, string memory p2, address p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,string,address)", p0, p1, p2, p3 ) ); } function log(address p0, address p1, bool p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,bool,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, address p1, bool p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,bool,string)", p0, p1, p2, p3 ) ); } function log(address p0, address p1, bool p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,bool,bool)", p0, p1, p2, p3 ) ); } function log(address p0, address p1, bool p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,bool,address)", p0, p1, p2, p3 ) ); } function log(address p0, address p1, address p2, uint256 p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,address,uint256)", p0, p1, p2, p3 ) ); } function log( address p0, address p1, address p2, string memory p3 ) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,address,string)", p0, p1, p2, p3 ) ); } function log(address p0, address p1, address p2, bool p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,address,bool)", p0, p1, p2, p3 ) ); } function log(address p0, address p1, address p2, address p3) internal pure { _sendLogPayload( abi.encodeWithSignature( "log(address,address,address,address)", p0, p1, p2, p3 ) ); } } // File contracts/IntraverseProtocol.sol // Original license: SPDX_License_Identifier: GPL-3.0 pragma solidity ^0.8.24; contract IntraverseProtocol is Initializable, Context, ERC1155Supply, ERC2981, Ownable { using ECDSA for bytes32; using MessageHashUtils for bytes32; uint256 private constant MIN_RARITIES = 2; uint256 private constant MAX_RARITIES = 20; error InvalidPhase(); error InvalidRarity(); error InvalidBurningConfig(uint256 expected, uint256 actual); error InvalidUnlockConfig(uint256 expected, uint256 actual); error InvalidLimitsConfig(); error UserNotWhitelisted(); error InvalidTokenId(); error MaxMintCountReached(); error NoMoreMintsAvailableForUser(address user); error TotalMintLimitReachedForUser(address user); error GlobalMintLimitReached(); error InvalidRecipient(address expected, address actual); error NotEnoughTimePassed(); error RarityNotYetUnlocked(); error AlreadyCheckedInToday(); error MaxRarityAlreadyUnlocked(); enum Phase { SETUP, WHITELIST, PUBLIC } struct Roles { address initialOwner; address royaltiesReceiver; address whitelistSigner; } struct Config { uint256 maxRarity; uint256 baseUnlockTime; uint256 restoreMintFactor; uint256 initialUnlockedRarity; uint16 checkInInterval; uint256 maxMintPerWallet; uint256 maxMintCount; uint256 mintLimit; uint256[] burnConfig; } Phase public currentPhase = Phase.SETUP; Roles public roles; Config public config; uint256 public mintGlobalCount; /// @notice counter for each user's mint mapping(address => uint256) public mintCount; /// @notice counter for each user's burn mapping(address => uint256) public burnCount; /// @notice store the last check in time for each user mapping(address => uint256) public lastCheckIn; /// @notice store the last check in time for each user mapping(address => uint256) public checkInCount; /// @notice User's unlocked rarity level mapping(address => uint256) public rarityUnlocked; string private contractUri; event Mint(address indexed recipient, uint256 tokenId); event TokenUpgraded( address indexed owner, uint256 fromTokenId, uint256 toTokenId ); event CheckIn(address indexed user, uint256 newRarity); modifier onlyPhase(Phase _phase) { if (currentPhase != _phase) revert InvalidPhase(); _; } modifier notInPhase(Phase _phase) { if (currentPhase == _phase) revert InvalidPhase(); _; } /// @custom:oz-upgrades-unsafe-allow constructor constructor() ERC1155("") Ownable(msg.sender) { _disableInitializers(); } function initialize( Roles memory _roles, Config memory _config, uint96 _defaultRoyalties, string memory _baseUri, string memory _contractUri ) public initializer { _setURI(_baseUri); _transferOwnership(_roles.initialOwner); roles = _roles; _updateContractConfig(_config); contractUri = _contractUri; _setDefaultRoyalty(roles.royaltiesReceiver, _defaultRoyalties); } function checkIn() public { // Calculate the current day number since the base timestamp uint256 currentDay = (block.timestamp - config.baseUnlockTime) / 1 days; // Use if statement with custom error instead of require if ( lastCheckIn[_msgSender()] >= config.baseUnlockTime + currentDay * 1 days ) { revert AlreadyCheckedInToday(); } if (rarityUnlocked[_msgSender()] >= config.maxRarity) { revert MaxRarityAlreadyUnlocked(); } // Update the user's last check-in timestamp lastCheckIn[_msgSender()] = block.timestamp; checkInCount[_msgSender()] += 1; if (checkInCount[_msgSender()] % config.checkInInterval == 0) { rarityUnlocked[_msgSender()] = getUnlockedRarity(_msgSender()) + 1; } emit CheckIn(_msgSender(), rarityUnlocked[_msgSender()]); } /** * @notice Get the rarity that can be unlocked today for a user * @param user The user's address * @return The rarity available for unlocking today */ function getNextRarity(address user) public view returns (uint256) { return rarityUnlocked[user] + 1; } /** * @notice Calculate the current day since the base timestamp * @return The current day number */ function getCurrentDay() public view returns (uint256) { return (block.timestamp - config.baseUnlockTime) / 1 days; } /// @notice Admin can update the phase function updatePhase(Phase _phase) public onlyOwner { currentPhase = _phase; } /// @notice Returns the contract-level metadata URI function contractURI() public view returns (string memory) { return contractUri; } /// @notice Owner can update the contract URI function updateContractURI( string memory _contractUri ) public onlyOwner onlyPhase(Phase.SETUP) { contractUri = _contractUri; } /// @notice Owner can update the base URI function updateMetadata( string memory _baseUri ) public onlyOwner onlyPhase(Phase.SETUP) { _setURI(_baseUri); } /// @notice Owner can update the whitelist signer function updateWhitelistSigner( address _whitelistSigner ) public onlyOwner onlyPhase(Phase.SETUP) { roles.whitelistSigner = _whitelistSigner; } /// @notice Owner can update the royalties receiver function updateRoyaltiesReceiver( address _royaltiesReceiver ) public onlyOwner onlyPhase(Phase.SETUP) { roles.royaltiesReceiver = _royaltiesReceiver; } /// @notice Owner can update the contract config function _updateContractConfig(Config memory _config) internal { if ( _config.maxRarity < MIN_RARITIES || _config.maxRarity > MAX_RARITIES ) { revert InvalidRarity(); } if (_config.burnConfig.length != _config.maxRarity - 1) { revert InvalidBurningConfig( _config.maxRarity - 1, _config.burnConfig.length ); } config = _config; } function updateContractConfig( Config memory _config ) public onlyOwner onlyPhase(Phase.SETUP) { _updateContractConfig(_config); } function getBurnConfig() public view returns (uint256[] memory) { return config.burnConfig; } function getConfig() public view returns (Config memory) { return config; } function getRoles() public view returns (Roles memory) { return roles; } /// @param recipient the address that will receive the minted tokens /// @param amount the amount of tokens to mint for the given type of mint function mintInitialSupply( address recipient, uint256 tokenId, uint256 amount ) public onlyOwner onlyPhase(Phase.SETUP) { _mint(recipient, tokenId, amount, new bytes(0)); } function canMint( uint256 _mintCount, uint256 _burnCount ) public view returns (bool) { if (config.restoreMintFactor == 0) { return _mintCount < config.mintLimit; } uint256 mintQuota = config.mintLimit + (_burnCount / config.restoreMintFactor) * config.mintLimit; return _mintCount < mintQuota; } /** * @notice Generate a hash for the given message * @param message The message to hash * @return bytes32 hash of the message */ function getMessageHash( string memory message ) public pure returns (bytes32) { return keccak256(abi.encodePacked(message)); } /** * @notice Verify the signature of a message * @param message The original message * @param signature The signature to verify * @return bool indicating whether the signature is valid */ function verifySignature( string memory message, bytes memory signature ) public view returns (bool) { bytes32 messageHash = getMessageHash(message); address recoveredSigner = messageHash.toEthSignedMessageHash().recover( signature ); return recoveredSigner == roles.whitelistSigner; } function messageFromAddress( address _address ) public pure returns (string memory) { return string.concat("address:", Strings.toHexString(_address)); } /// @notice Free mint a token /// @param recipient the address that will receive the minted token function mint(address recipient, bytes memory signature) public { if (currentPhase == Phase.SETUP) { revert InvalidPhase(); } else if (currentPhase == Phase.WHITELIST) { string memory message = messageFromAddress(recipient); if (!verifySignature(message, signature)) { revert UserNotWhitelisted(); } } if (mintGlobalCount >= config.maxMintCount) { revert MaxMintCountReached(); } if (mintCount[recipient] >= config.maxMintPerWallet) { revert TotalMintLimitReachedForUser(recipient); } if (canMint(mintCount[recipient], burnCount[recipient]) == false) { revert NoMoreMintsAvailableForUser(recipient); } mintCount[recipient] += 1; mintGlobalCount += 1; _mint(recipient, 1, 1, new bytes(0)); } function getUnlockedRarity(address user) public view returns (uint256) { if (rarityUnlocked[user] == 0) { return config.initialUnlockedRarity; } else { return rarityUnlocked[user]; } } /// @notice Upgrade a token to the next rarity according to the burn config /// @param _tokenId the token ID to upgrade to the next rarity function upgradeTokenTo(uint256 _tokenId) public { if (_tokenId <= 0 || _tokenId > config.maxRarity) { revert InvalidRarity(); } if (_tokenId > getUnlockedRarity(_msgSender()) + 1) { revert RarityNotYetUnlocked(); } // Token IDs starts from 1 while rarities start from 0 uint256 rarityIndex = _tokenId - 1; // Rarities are shifted by 1 since there is no config // for the first rarity uint256 configIndex = rarityIndex - 1; uint256 amountToBurn = config.burnConfig[configIndex]; _burn(_msgSender(), rarityIndex, amountToBurn); _mint(_msgSender(), _tokenId, 1, new bytes(0)); // Counts the burn transactions, not the amount of tokens burned burnCount[_msgSender()] += 1; emit TokenUpgraded(msg.sender, rarityIndex, _tokenId); } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface( bytes4 _interfaceId ) public view virtual override(ERC1155, ERC2981) returns (bool) { return _interfaceId == type(IERC1155).interfaceId || _interfaceId == type(ERC2981).interfaceId || super.supportsInterface(_interfaceId); } } // File contracts/IntraverseProtocolCloneFactory.sol // Original license: SPDX_License_Identifier: GPL-3.0 pragma solidity ^0.8.24; contract IntraverseProtocolCloneFactory is Ownable { using Clones for address; address public immutable implementation; address[] public clones; event CloneDeployed(address clone); constructor() Ownable(msg.sender) { implementation = address(new IntraverseProtocol()); } function _deployClone( IntraverseProtocol.Roles memory _roles, IntraverseProtocol.Config memory _config, uint96 _defaultRoyalties, string memory _baseUri, string memory _contractUri ) internal returns (address) { address clone = implementation.clone(); IntraverseProtocol(clone).initialize( _roles, _config, _defaultRoyalties, _baseUri, _contractUri ); clones.push(clone); emit CloneDeployed(clone); return clone; } function deployClone( IntraverseProtocol.Roles memory _roles, IntraverseProtocol.Config memory _config, uint96 _defaultRoyalties, string memory _baseUri, string memory _contractUri, uint256 _numberOfClones ) external onlyOwner returns (address[] memory) { for (uint256 i = 0; i < _numberOfClones; i++) { _deployClone( _roles, _config, _defaultRoyalties, _baseUri, _contractUri ); } return clones; } function getClones() external view returns (address[] memory) { return clones; } }
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyCheckedInToday","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC1155InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC1155InvalidApprover","type":"error"},{"inputs":[{"internalType":"uint256","name":"idsLength","type":"uint256"},{"internalType":"uint256","name":"valuesLength","type":"uint256"}],"name":"ERC1155InvalidArrayLength","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC1155InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC1155InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC1155InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC1155MissingApprovalForAll","type":"error"},{"inputs":[{"internalType":"uint256","name":"numerator","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"ERC2981InvalidDefaultRoyalty","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC2981InvalidDefaultRoyaltyReceiver","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"numerator","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"ERC2981InvalidTokenRoyalty","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC2981InvalidTokenRoyaltyReceiver","type":"error"},{"inputs":[],"name":"GlobalMintLimitReached","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"InvalidBurningConfig","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidLimitsConfig","type":"error"},{"inputs":[],"name":"InvalidPhase","type":"error"},{"inputs":[],"name":"InvalidRarity","type":"error"},{"inputs":[{"internalType":"address","name":"expected","type":"address"},{"internalType":"address","name":"actual","type":"address"}],"name":"InvalidRecipient","type":"error"},{"inputs":[],"name":"InvalidTokenId","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"InvalidUnlockConfig","type":"error"},{"inputs":[],"name":"MaxMintCountReached","type":"error"},{"inputs":[],"name":"MaxRarityAlreadyUnlocked","type":"error"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"NoMoreMintsAvailableForUser","type":"error"},{"inputs":[],"name":"NotEnoughTimePassed","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"RarityNotYetUnlocked","type":"error"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"length","type":"uint256"}],"name":"StringsInsufficientHexLength","type":"error"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"TotalMintLimitReachedForUser","type":"error"},{"inputs":[],"name":"UserNotWhitelisted","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"newRarity","type":"uint256"}],"name":"CheckIn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Mint","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"}],"name":"TokenUpgraded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"burnCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_mintCount","type":"uint256"},{"internalType":"uint256","name":"_burnCount","type":"uint256"}],"name":"canMint","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"checkIn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"checkInCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"config","outputs":[{"internalType":"uint256","name":"maxRarity","type":"uint256"},{"internalType":"uint256","name":"baseUnlockTime","type":"uint256"},{"internalType":"uint256","name":"restoreMintFactor","type":"uint256"},{"internalType":"uint256","name":"initialUnlockedRarity","type":"uint256"},{"internalType":"uint16","name":"checkInInterval","type":"uint16"},{"internalType":"uint256","name":"maxMintPerWallet","type":"uint256"},{"internalType":"uint256","name":"maxMintCount","type":"uint256"},{"internalType":"uint256","name":"mintLimit","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentPhase","outputs":[{"internalType":"enum IntraverseProtocol.Phase","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"exists","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBurnConfig","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getConfig","outputs":[{"components":[{"internalType":"uint256","name":"maxRarity","type":"uint256"},{"internalType":"uint256","name":"baseUnlockTime","type":"uint256"},{"internalType":"uint256","name":"restoreMintFactor","type":"uint256"},{"internalType":"uint256","name":"initialUnlockedRarity","type":"uint256"},{"internalType":"uint16","name":"checkInInterval","type":"uint16"},{"internalType":"uint256","name":"maxMintPerWallet","type":"uint256"},{"internalType":"uint256","name":"maxMintCount","type":"uint256"},{"internalType":"uint256","name":"mintLimit","type":"uint256"},{"internalType":"uint256[]","name":"burnConfig","type":"uint256[]"}],"internalType":"struct IntraverseProtocol.Config","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentDay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"message","type":"string"}],"name":"getMessageHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getNextRarity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRoles","outputs":[{"components":[{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"address","name":"royaltiesReceiver","type":"address"},{"internalType":"address","name":"whitelistSigner","type":"address"}],"internalType":"struct IntraverseProtocol.Roles","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUnlockedRarity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"address","name":"royaltiesReceiver","type":"address"},{"internalType":"address","name":"whitelistSigner","type":"address"}],"internalType":"struct IntraverseProtocol.Roles","name":"_roles","type":"tuple"},{"components":[{"internalType":"uint256","name":"maxRarity","type":"uint256"},{"internalType":"uint256","name":"baseUnlockTime","type":"uint256"},{"internalType":"uint256","name":"restoreMintFactor","type":"uint256"},{"internalType":"uint256","name":"initialUnlockedRarity","type":"uint256"},{"internalType":"uint16","name":"checkInInterval","type":"uint16"},{"internalType":"uint256","name":"maxMintPerWallet","type":"uint256"},{"internalType":"uint256","name":"maxMintCount","type":"uint256"},{"internalType":"uint256","name":"mintLimit","type":"uint256"},{"internalType":"uint256[]","name":"burnConfig","type":"uint256[]"}],"internalType":"struct IntraverseProtocol.Config","name":"_config","type":"tuple"},{"internalType":"uint96","name":"_defaultRoyalties","type":"uint96"},{"internalType":"string","name":"_baseUri","type":"string"},{"internalType":"string","name":"_contractUri","type":"string"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lastCheckIn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"messageFromAddress","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"mintCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintGlobalCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mintInitialSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rarityUnlocked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"roles","outputs":[{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"address","name":"royaltiesReceiver","type":"address"},{"internalType":"address","name":"whitelistSigner","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"_interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"maxRarity","type":"uint256"},{"internalType":"uint256","name":"baseUnlockTime","type":"uint256"},{"internalType":"uint256","name":"restoreMintFactor","type":"uint256"},{"internalType":"uint256","name":"initialUnlockedRarity","type":"uint256"},{"internalType":"uint16","name":"checkInInterval","type":"uint16"},{"internalType":"uint256","name":"maxMintPerWallet","type":"uint256"},{"internalType":"uint256","name":"maxMintCount","type":"uint256"},{"internalType":"uint256","name":"mintLimit","type":"uint256"},{"internalType":"uint256[]","name":"burnConfig","type":"uint256[]"}],"internalType":"struct IntraverseProtocol.Config","name":"_config","type":"tuple"}],"name":"updateContractConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_contractUri","type":"string"}],"name":"updateContractURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_baseUri","type":"string"}],"name":"updateMetadata","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum IntraverseProtocol.Phase","name":"_phase","type":"uint8"}],"name":"updatePhase","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_royaltiesReceiver","type":"address"}],"name":"updateRoyaltiesReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_whitelistSigner","type":"address"}],"name":"updateWhitelistSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"}],"name":"upgradeTokenTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"message","type":"string"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"verifySignature","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.